<table>
<thead>
<tr>
<th>Title</th>
<th>Effects of Anthocyanins in Black Currant on Retinal Blood Flow Circulation of Patients with Normal Tension Glaucoma. A Pilot Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Ohguro, Ikuyo, Ohguro, Hiroshi, Nakazawa, Mitsuru</td>
</tr>
<tr>
<td>Citation</td>
<td>弘前医学. 59, 2007, p.23-32</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2007-11-15</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10129/691</td>
</tr>
<tr>
<td>Rights</td>
<td>Text version publisher</td>
</tr>
</tbody>
</table>

[弘前大学図書館のリンク]
ORIGINAL ARTICLE

EFFECTS OF ANTHOCYANINS IN BLACK CURRANT ON RETINAL BLOOD FLOW CIRCULATION OF PATIENTS WITH NORMAL TENSION GLAUCOMA. A PILOT STUDY

Ikuyo Ohguro¹, Hiroshi Ohguro¹, and Mitsuru Nakazawa²

Abstract Purpose: To investigate the effects of anthocyanins in black currant on retinal blood flow circulation of patients with normal tension glaucoma (NTG).

Methods: Thirty consecutive patients with NTG were included in this study. They were orally administrated anthocyanins extracted from black currant in tablet form once a day for a 6-month period. Systemic blood pressures, intraocular pressures (IOPs), concentrations of the plasma endothelin-1 (ET-1), blood flows at the neuroretinal rim of the optic nerve head and peripapillary retina, and visual field defects were measured before and just after the administration period.

Results: Our study demonstrated that oral administration of anthocyanins tablets significantly increased the blood flows at both neuroretinal rim of the optic nerve head and peripapillary retina (p < 0.05), with no significant changes in mean blood pressures or IOPs. Furthermore, none of the subjects showed progression of their visual field defects. We also demonstrated that the oral administration of anthocyanins tablets significantly increased, and thus normalized the concentrations of plasma ET-1 (p < 0.05).

Conclusion: These results suggest that anthocyanins orally administrated might be a safe and valuable choice for neuroprotective treatment of patients with NTG.

Key words: anthocyanins; ocular blood flow; neuroprotection; normal tension glaucoma; endothelin-1.
Introduction

Glaucomatous optic neuropathy is recognized as one of the major causes of irreversible blindness worldwide. It is well known that elevated intraocular pressure (IOP) is the most important risk factor for glaucomatous optic nerve damage. However, lowering the elevated IOP by medications or surgical interventions is also recognized to be insufficient to prevent the progression of glaucomatous optic neuropathy. In addition, according to a recent clinical survey conducted in Japan (Tajimi Study), one has glaucoma for 14 Japanese people above the age of 40, increasing with advancing age, and the commonest type of glaucoma (more than 80% of total glaucoma) is normal tension glaucoma (NTG). These observations suggest that some unknown factors independent of IOP are involved in the etiology of glaucoma.

Retinal and optic blood supply is thought to be a factor causing glaucomatous optic neuropathy, especially in NTG and it is well established that disc hemorrhages are more likely to exist in patients with NTG than in those with primary open angle glaucoma (POAG). It was also reported that women with collagen disease have a high susceptibility to glaucoma. We have attempted to discover the clinical factors related to glaucoma etiology, and recently found that platelet aggregation ability is remarkably increased in patients with NTG compared with in those with POAG or normal subjects. Furthermore, we also revealed that the concentrations of the plasma endothelin-1 (ET-1), an endogenous peptide with strong vasoconstrictive effect, were significantly lower in patients with NTG (66.9 ± 8.1 years old, 3.34 ± 1.27 pg/ml) than in normal subjects (60.5 ± 5.0 years old, 4.39 ± 1.34 pg/ml). Taken together, it is suggested that circulatory disturbances at the optic nerve heads are crucially involved in the etiology of NTG.

Anthocyanins are kinds of polyphenols, rich in natural diets such as red wine, cocoa and berries, and are known to have healthy effects. The anthocyanins in black currant in particular have been implicated in improvement of visual functions, such as dark adaptation, transient refractive alternation. Matsumoto reported that significant amounts of anthocyanins were transferred into choroids and retina, and ciliary body after systemic administration of black currant and that anthocyanins components isolated from black currant activated ET-1 receptor (ET_B receptor) distributed in the ciliary smooth muscle and pigment epithelium, resulting in relaxation of the bovine ciliary smooth muscle. These observations suggested that anthocyanins may alter the metabolism of ET-1 through ET-1 receptors, and might affect the hemodynamics of ocular blood flow, causing alternation of blood flow at optic nerve heads.

The aim of this study is to elucidate the effect of orally administrated anthocyanins extracted from black currant on glaucomatous optic neuropathy in patients with NTG, by evaluating the changes in concentration of plasma ET-1, blood flow at optic nerve heads and visual field defects.

Subjects and Methods

The present study was approved by the Ethics Committee of the Hirosaki University School of Medicine and written informed consent was obtained from all patients and subjects.

Thirty consecutive patients with NTG were included in this study. Patients with NTG had gonioscopically normal open angles, no history of IOP above 21 mmHg, characteristic nerve fiber layer visual field defects detected by the Humphrey Field Analyzer, program 30-2 (Humphrey Instruments, San Leandro, California, USA), and glaucomatous optic disc changes. The anthocyanin tablet containing 50 mg of anthocyanins extracted from black currant...
mentioned as above was orally administrated to every patient once a day (7-9 am) for a 6-month period (from August 2004 to February 2005). Systemic blood pressures, IOPs, concentrations of plasma ET-1, blood flows at the neuroretinal rim of the optic nerve head and peripapillary retina, and visual field defects were measured before and just after the administration period.

Systemic pressures were recorded just before and after measurements of ocular blood flows, and mean blood pressures were calculated according to the formula:

\[
\text{Mean blood pressure} = \text{diastolic pressure} + \frac{1}{3} \times (\text{systolic pressure} - \text{diastolic pressure})
\]

Intraocular pressures were measured with a Goldmann appplanation tonometer before, during and just after the administration period, and ocular perfusion pressures (OPPs) were calculated according to the formula:

\[
\text{OPP} = \frac{2}{3} \times (\text{diastolic pressure} + \frac{1}{3} \times (\text{systolic pressure} - \text{diastolic pressure})) - \text{IOP}
\]

The subjects were obliged to quietly remain in a sitting position for 30 minutes and their blood samples (5 ml) were taken at the start and the end point of study (9-11 am). Plasma was separated by centrifugation and frozen at -30°C. Prior to measuring the concentration of plasma ET-1, the frozen plasma samples were thawed, and then subjected to Parameter® (R&D Systems, Minneapolis, U.S.A.), human ET-1 immunoassay kit. This assay employs the quantitative enzyme immunoassay technique. An antibody specific for ET-1 has been pre-coated onto a microplate. Standards, samples, control and conjugate are pipetted into the wells and any ET-1 present is sandwiched by the immobilized antibody and the enzyme-linked antibody specific for ET-1. Following a wash to remove any unbound substances and/or antibody-enzyme reagents, substrate is added to the wells and color develops in proportion to the amount of ET-1 binding. The color development is stopped and the intensity of the color is measured by microplate reader.

The blood flows at the neuroretinal rim of the optic nerve head and peripapillary retina were assessed with a commercially available scanning laser Doppler flowmeter (Heidelberg Retina Flowmeter [HRF], Heidelberg Engineering, Heidelberg, Germany) at the start and the end points of the administration period. This is a noninvasive instrument combining both laser Doppler flowmetry with a scanning laser technique. As with the blood sampling, the subjects were obliged to quietly remain in a sitting position for 30 minutes, and then blood flows were assessed (1-3 pm). Briefly, the fundus camera was adjusted until a focused, evenly illuminated, and centered view of the optic nerve head was obtained. The patients were asked to use the fellow eye for fixation and to refrain from movement and blinking during image acquisition. Using a 2.5-degree × 10-degree frame, a total of 20 images were then acquired in one session, focusing on the neuroretinal rim or the superficial retina. All images were reviewed by the same observer (I.O.), and, before data analysis, the best 4 images in terms of focusing, brightness, and absence of movements, were chosen for each session. Full-field perfusion analysis was then performed on each of the 4 chosen images, and mean values of blood flow for the temporal neuroretinal rim of the optic nerve head and the temporal peripapillary retina were obtained in arbitrary units (au). When selecting measuring points, peripapillary chorioretinal atrophy areas were excluded. Fundus photos were used to try to measure exactly the same points as had previously been measured.

Visual field testing was performed with the Humphrey Field Analyzer, program 30-2. All patients were experienced in visual field test, having performed at least 3 in total including 1 test within the last 3 months before the beginning of study and 1 test at the end of study. All visual field tests had fixation losses of less
than 25% and false-positive and false-negative errors were less than 25%.

To minimize measurement errors, all measurements except visual field tests and blood flow assessments were taken between 9 and 11 am. In addition, patients were allowed to continue with their prescribed systemic medications as well as their topical anti-glaucoma medications, which may have influenced the ocular blood flow during this prospective study period.

The resultant data were analyzed by paired t-test. Statistical significance was set at $P < 0.05$.

Results

Table 1 summarizes the characteristics of the patients with NTG. Nine were male and 21 were female. Their mean age was 66.7 ± 6.9 (mean ± standard deviation [S.D.]) years old, ranging from 51 to 80 years old. Mean blood pressures were not significantly changed before or just after the administration period as well as just before or after measurements of ocular blood flows (Table 2). Intraocular pressure of each patient was stable during the administration period, and IOPs and OPPs were not significantly changed before or just after the administration period (Table 3). The concentrations of the plasma ET-1 were significantly increased from 3.27 ± 1.67 (mean ± S.D.) pg/ml to 4.10 ± 2.14 (mean ± S.D.) pg/ml before and just after the administration period, respectively ($p < 0.05$) (Table 4 & Figure 1). Two of 30 subjects showed high concentrations of ET-1, 6.56 pg/ml and 6.36 pg/ml, and after the administration period they showed almost normal levels of ET-1, 4.6 pg/ml and 5.0 pg/ml, respectively. Table 5 summarizes

Table 1. Patient Characteristics

<table>
<thead>
<tr>
<th>Age (mean ± S.D.)</th>
<th>66.7 ± 6.9 yrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>(51 ~ 80 yrs)</td>
<td></td>
</tr>
<tr>
<td>Sex (M/F)</td>
<td>9/21</td>
</tr>
</tbody>
</table>

Table 2. Effects of anthocyanins administration on systemic blood pressure (mmHg)

<table>
<thead>
<tr>
<th></th>
<th>Pre administration</th>
<th>Post administration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>pre measure BP</td>
<td>post measure BP</td>
</tr>
<tr>
<td>Mean BP</td>
<td>98.5 ± 12.1</td>
<td>98.3 ± 11.6</td>
</tr>
<tr>
<td></td>
<td>95.8 ± 10.4</td>
<td>96.3 ± 14.8</td>
</tr>
</tbody>
</table>

BP: blood pressure
Data are presented as mean ± S.D.

Table 3. Effects of anthocyanins administration on intraocular pressures and ocular perfusion pressures (mmHg)

<table>
<thead>
<tr>
<th></th>
<th>Pre administration</th>
<th>Post administration</th>
</tr>
</thead>
<tbody>
<tr>
<td>IOP (right eye)</td>
<td>13.9 ± 1.8</td>
<td>13.5 ± 1.6</td>
</tr>
<tr>
<td>IOP (left eye)</td>
<td>13.6 ± 2.1</td>
<td>13.4 ± 1.9</td>
</tr>
<tr>
<td>OPP (right eye)</td>
<td>52.1 ± 7.9</td>
<td>50.7 ± 7.1</td>
</tr>
<tr>
<td>OPP (left eye)</td>
<td>52.4 ± 8.2</td>
<td>50.8 ± 7.2</td>
</tr>
</tbody>
</table>

IOP: intraocular pressure, OPP: ocular perfusion pressure
Data are presented as mean ± S.D.
Table 4. Effects of anthocyanins administration on the concentration of plasma ET-1 (pg/ml)

<table>
<thead>
<tr>
<th></th>
<th>Pre administration</th>
<th>Post administration</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-1</td>
<td>3.27 ± 1.67</td>
<td>4.10 ± 2.14*</td>
</tr>
</tbody>
</table>

paired t-test *p < 0.05

Data are presented as mean ± S.D.

The changes in plasma ET-1 concentrations in patients with NTG by anthocyanins administration. Each color line represents the change in plasma ET-1 concentration before and just after oral administration of anthocyanins in each patient with NTG. ET-1: endothelin-1; NTG: normal tension glaucoma

the blood flows at the neuroretinal rim of the optic nerve head and peripapillary retina (all data was presented as mean ± S.D.). At the end of the administration period, the blood flows of the superior and inferior temporal neuroretinal rim of the optic nerve head, and the superior and inferior temporal peripapillary retina in the right eye were significantly increased from 507.7 ± 174.3, 393.6 ± 138.0, 457.6 ± 140.6, 377.0 ± 80.5 to 638.6 ± 191.2 (p < 0.05), 582.2 ± 177.8 (p < 0.01), 595.1 ± 171.5 (p < 0.01), 519.1 ± 130.0 (p < 0.0005), respectively. Also in the left eye, the blood flows of the superior and inferior temporal neuroretinal rim of the optic nerve head, and the superior and inferior temporal peripapillary retina were significantly increased from 442.4 ± 214.3, 466.5 ± 216.3, 375.0 ± 75.9, 444.9 ± 100.9 to 662.4 ± 185.3 (p < 0.0005), 653.7 ± 260.9
Table 5. Scanning laser Doppler flowmetry measurements of the neuroretinal rim of optic nerve head and peripapillary retina (a.u.)

<table>
<thead>
<tr>
<th></th>
<th>Pre administration</th>
<th>Post administration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right eye</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sup. temp. rim</td>
<td>507.7 ± 174.3</td>
<td>638.6 ± 191.2</td>
</tr>
<tr>
<td>Inf. temp. rim</td>
<td>393.6** ± 138.0</td>
<td>582.2** ± 177.8</td>
</tr>
<tr>
<td>Sup. temp. retina</td>
<td>457.6** ± 140.6</td>
<td>595.1** ± 171.5</td>
</tr>
<tr>
<td>Inf. temp. retina</td>
<td>377.0**** ± 80.5</td>
<td>519.1**** ± 130.0</td>
</tr>
<tr>
<td>Left eye</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sup. temp. rim</td>
<td>442.4**** ± 214.3</td>
<td>662.4**** ± 185.3</td>
</tr>
<tr>
<td>Inf. temp. rim</td>
<td>466.5**** ± 216.3</td>
<td>653.7**** ± 260.9</td>
</tr>
<tr>
<td>Sup. temp. retina</td>
<td>375.0**** ± 75.9</td>
<td>442.2**** ± 80.1</td>
</tr>
<tr>
<td>Inf. temp. retina</td>
<td>444.9 ± 1009</td>
<td>546.9 ± 185.8</td>
</tr>
</tbody>
</table>

Paired t-test *p < 0.05, **p < 0.01, ***p < 0.005, ****p < 0.0005
Data are presented as mean ± S.D.

Table 6. Effects of anthocyanins administration on visual field defects (dB)

<table>
<thead>
<tr>
<th></th>
<th>Pre administration</th>
<th>Post administration</th>
</tr>
</thead>
<tbody>
<tr>
<td>MD (right eye)</td>
<td>-3.28 ± 4.65</td>
<td>-3.23 ± 4.49</td>
</tr>
<tr>
<td>MD (left eye)</td>
<td>-4.51 ± 4.34</td>
<td>-4.32 ± 4.29</td>
</tr>
</tbody>
</table>

MD: mean deviation of visual field
Data are presented as mean ± S.D.

(p < 0.0005), 442.2 ± 80.1 (p < 0.005), 546.9 ± 185.8 (p < 0.05), respectively. Table 6 shows that mean deviation value was not significantly changed before and after the administration period.

Discussion

Several investigators have suggested that disturbance of ocular blood flow may contribute to glaucomatous optic neuropathy in patients with NTG. So far, according to the literature, patients with NTG have had ischemia, vascular dysregulation, arteriosclerosis, high blood viscosity, platelet hyper aggregation, vasospasm, aberrant autoimmunity, and abnormal effects of endogenous substances such as glutamate, nitric oxide, and ET-1. This evidence appears to indicate that the ocular blood flows are reduced in patients with NTG.

In fact, clinical investigators reported that both neuroretinal rim blood flow and peripapillary retinal blood flow were significantly reduced in patients with NTG as compared with age-matched controls, and that neuroretinal rim blood flow was significantly correlated to deterioration of existing visual field defects. Hafez et al. evaluated neuroretinal rim blood flow in patients with POAG and ocular hypertension (OH), and demonstrated that the former had significantly lower blood flow in the neuroretinal rim compared with the latter. They also reported that neuroretinal rim blood flow was significantly inversely correlated to increased cup-to-disc ratio (C/D), and that patients with OH showing larger C/D ratios demonstrated significantly lower rim blood flow compared with those showing smaller C/D ratios. They thereby suggested that rim perfusion might be reduced in high-risk patients with OH before the manifestation of visual field.
Effects of Anthocyanins on Retinal Blood Flow Circulation

Defects.

Recently, several Ca²⁺ channel blockers as drugs for cerebrovascular diseases, including cerebral arteriosclerosis and central nervous system vasospasm, could improve visual field defects in certain patients with NTG. In 1999, Tomita et al. showed that intravenously administrated nilvadipine, a Ca²⁺ channel blocker, increased blood velocity and blood flow in the optic nerve head, choroid, and retina of rabbits, and also revealed that orally administrated nilvadipine increased blood velocity in the optic nerve head of NTG patients. Together, it is suggested that some kind of Ca²⁺ channel blockers could increase blood flow in the optic nerve heads and improve visual field defects in certain patients with NTG.

Our study demonstrated that oral administration of anthocyanins tablets significantly increased the blood flows at both neuroretinal rim of the optic nerve head and peripapillary retina, with no significant changes in mean blood pressures, IOPs or OPPs. Moreover, no subjects showed any progression of their visual field defects. These results suggest that ocular blood flow in the patients with NTG had been chronically decreased, and was then improved by the daily oral administration of anthocyanins, which may contributed to the preservation of their visual fields.

It had been reported that the blood flows at the neuroretinal rim of the optic nerve heads and retina were decreasing with advancing age and also revealed that the blood flows at neuroretinal rim of glaucoma patients were significantly decreasing with advancing of glaucoma stages. Accordingly, in a view of management of glaucoma patients during their lifetime, we have to consider the blood flows of optic nerve heads besides their IOPs.

We also demonstrated that the oral administration of anthocyanins tablets significantly increased, and thus normalized, the concentrations of plasma ET-1. Endothelin-1, discovered by Yanagisawa in 1988, is a potent vasoconstrictive peptide produced by vascular endothelial cells. Some investigations in ophthalmology have shown that ET-1 receptors are present in human uveal tissues, retina and optic nerve head, suggesting that ET-1 may be implicated in ischemic vascular diseases such as diabetic retinopathy, retinal vein occlusion and retinal artery occlusion. Regarding the role of ET-1 in NTG, reports on ET-1 levels are conflicting. Although two reports showed statistically significant elevation of plasma ET-1 levels in patients with NTG, another report showed only a nonsignificant trend. Previously, we reported that the concentrations of plasma ET-1 were significantly decreased in patients with NTG compared with those in normal subjects.

In general, it is recognized that if the blood level of any particular substance is chronically low, its receptor will become hypersensitive, and then react excessively in relation to minimum changes in its blood level. Accordingly, we hypothesized that the patients with NTG showed chronically low concentrations of plasma ET-1, and that their receptors of ET-1 then become hypersensitive to ET-1. Under such conditions, excessive vasoconstriction could occur in cases of NTG and continue even with only a little change of plasma ET-1 levels, thereby contributing to ocular blood flow disturbances. Our hypothesis is confirmed by the findings that baseline plasma ET-1 levels were similar between patients with glaucoma and control subjects, but that patients with glaucoma had a significant increase in plasma ET-1 after cooling, which was not observed in control subjects.

We do not know why the oral administration of anthocyanins tablets significantly increased or normalized the concentrations of plasma ET-1 in patients with NTG. Regarding the relationship between anthocyanins and ET-1, Matsumoto...
reported\(^{13}\) that delphinidin-3-rutinoside (D3R), the major anthocyanin component isolated from blackcurrant, produced sustained and progressive relaxation during contraction caused by ET-1 in bovine ciliary smooth muscle, suggesting that D3R possibly activates ET\(_B\) receptor to release nitric oxide, thereby causing relaxation of the bovine ciliary smooth muscle. These observations suggest that anthocyanins orally administered may produce some alterations in the ET-1 receptors such as pharmacological reactivity and hypersensitivity, thereby resulting in an increase or normalization of the concentrations of plasma ET-1 in patients with NTG.

The present study demonstrated that oral administration of anthocyanins tablets significantly increased the blood flows at both the neuroretinal rim of the optic nerve head and peripapillary retina, with no significant changes in mean blood pressures, IOPs or OPPs. Furthermore, no subjects showed any progression in their visual field defects. We also demonstrated that the oral administration of anthocyanins tablets significantly increased, and thus normalized the concentrations of plasma ET-1, thereby possibly affecting the ET-1 receptors. These results suggest that oral administration of anthocyanins might be a safe and valuable option for neuroprotective treatment in patients with NTG. Although, the present study is not a double-blind, nor placebo-controlled design. To make sure the effects of anthocyanins in black currant on retinal blood flow circulation of patients with NTG, we are planning a double-blind and placebo-controlled study.

References

2) The Advanced Glaucoma Intervention Study (AIGIS). The relationship between control of

12) Nakaishi H, Matsumoto H, Tominaga S, Hirayama...

32

