 Effects of cholesterol alterations are mediated via G-protein-related pathways in outer hair cells

Takahiko Nagaki · Seiji Kakehata · Rei Kitani · Takahisa Abe · Hideichi Shinkawa

Abstract Cholesterol is an essential component of cell membranes, and determines their rigidity and fluidity. Alterations in membrane cholesterol by MβCD or water-soluble cholesterol affect the stiffness, capacitance, motility, and cell length of outer hair cells (OHCs). This suggests that reconstruction of the cytoskeleton may be induced by cholesterol alterations. In this study, we investigated intracellular signaling pathways involving G proteins to determine whether they modulate the changes in voltage-dependent capacitance caused by cholesterol alterations. Membrane capacitance of isolated guinea pig OHCs were assessed using a two-sine voltage stimulus protocol superimposed onto a voltage ramp (200 ms duration) from −150 to +140 mV. One group of OHCs was treated with 100 μM guanosine 5′-O-(3-thiotriphosphate) tetraltithium salt (GTPγS), the GTP analog, administrated into individual cells via patch pipettes. Another group of OHCs was internally perfused with 600 μM guanosine 5′-(β-thio) diphosphate trilithium salt (GDPβS), the GDP analog. A third group was perfused with internal solution only as a control. Application of 1 mM MβCD shifted non-linear capacitance curves to the depolarized solution only as a control. Application of 1 mM MβCD decreased the cell length by 16.53±4.27 % in the control group and by 6.45±6.22 % in the GTPγS group. In addition, we investigated the effects of GDPβS on cholesterol-treated OHCs. One millimolar cholesterol was externally applied after the 4-min application of 1 mM MβCD because the shift of V-Cm function caused by cholesterol alone was small. Application of cholesterol shifted V-Cm curves of the control group to the hyperpolarized direction with increase of the Cmpeak. After the 10-min application of cholesterol, changes of Vcmpeak and Cmpeak were −9.19±6.68 mV and 2.14±0.44 pF, respectively (n=4). On the other hand, in the GDPβS-treated OHCs, the shift of Vcmpeak and increase of Cmpeak were attenuated markedly. The shift of Vcmpeak and increase of Cmpeak after 10 min were 5.13±10.46 mV and −0.55±1.39 pF, respectively (n=6). This study demonstrated that internally perfused GTPγS inhibited the MβCD effects and GDPβS inhibited the cholesterol effects, raising the possibility that G proteins may be involved in outer hair cell homeostasis as well as the possibility that cholesterol response may be G protein mediated. More study is required to clarify the detailed role of G proteins in the relation between cholesterol and the OHC cytoskeleton.

Keywords Cholesterol · Outer hair cell · Electromotility · Membrane capacitance · Cochlear amplifier · Methyl-beta-cyclodextrin · Guanosine 5′-O-(3-thiotriphosphate) tetraltithium salt · Guanosine 5′-(β-thio) diphosphate trilithium salt · G protein

Abbreviations

OHC Outer hair cell
MβCD Methyl-beta-cyclodextrin
they modulate the cell changes derived by cholesterol ing pathways involving G proteins to determine whether membrane using methyl-

have been identified as regulators of OHC motility populations. Small GTPases RhoA, Rac1, and cdc42 merization and depolymerization in nonauditory cell different types of motility by regulating the actin poly-

(Ras homologous) family of small GTPases plays a associated with membrane cholesterol levels. The Rho motility, stiffness, and cell length of OHCs [36], whilst OHCs – pillars, which play a role in the interaction between the plasma membrane and cytoskeleton (cortical lattice) [39]. OHC electromotility is variable by many factors; intra-
cellular turgor pressure, osmolarity, temperature, electrical field, drugs, and so on [17, 18, 23].

Cholesterol is an essential component of cell membranes, and determines their rigidity and fluidity. It is suggested that the cholesterol levels in the plasma membrane can affect the efficiency of the motor protein [1, 8, 37]. Changes in cholesterol level in the plasma membrane using methyl-β-cyclodextrin (MβCD) or water-soluble cholesterol affect the membrane capacitance, cell motility, stiffness, and cell length of OHCs [29, 33]. This suggests that cytoskeletal reorganization could be associated with membrane cholesterol levels. The Rho (Ras homologous) family of small GTPases plays a crucial role in cytoskeletal reorganization and mediates different types of motility by regulating the actin polymerization and depolymerization in nonauditory cell populations. Small GTPases RhoA, Rac1, and cdc42 have been identified as regulators of OHC motility [20]. In this study, we investigated intracellular signaling pathways involving G proteins to determine whether they modulate the cell changes derived by cholesterol alteration.

Materials and methods

Isolation of cells

Guinea pigs of both sexes, weighting 200–400 g, were anesthetized by intraperitoneal administration of pentobarbital sodium (30 mg/kg) and sacrificed by decapitation in accordance with the Guidelines for Animal Experimentation, Hirosaki University. The organ of Corti was removed from each cochlear spiral and incubated with trypsin for 10 min. OHCs were isolated using a 50-μl Hamilton syringe and suspended in external solution (15 ml) before being observed with an inverted microscope (Olympus IX71N) and recorded by digital video camera (SONY HDR-SR11). Cell lengths were measured from recorded images (Adobe Photoshop).

Whole-cell patch clamp

Whole-cell voltage-clamp was achieved with conventional patch techniques [14, 19]. Patch electrodes were made from borosilicate capillary glass (G-1.5; Narishige, Tokyo, Japan) using a P-97 micropipette puller (Sutter Instruments, Novato, CA). The intrapipette solution (blocking solution) contained (in mM): 100 NaCl, 20 TEA, 20 CsCl, 2 CoCl2, 1.52 MgCl2, 10 EGTA, 10 HEPES, the pH of which was adjusted to 7.2 with Tris. The standard external solution contained (in mM): 140 CsCl, 2 MgCl2, 10 EGTA, 10 HEPES, pH of which was adjusted to 7.2 with Tris. The osmolarity of these solutions was adjusted to 300 mOsm with glucose. OHCs were whole-cell voltage clamped with an Axon 200B amplifier using patch pipettes having initial resistances of 3–5 MΩ. Series resistances ranged from 5 to 20 MΩ [26, 27]. All data acquisition and analysis were performed with a Windows-based patch clamp program, jClamp. After the membrane rupture, OHCs were kept in whole-cell mode at least 5 min before performing experiments to permit the cells to reach their mechanical equilibrium [25]. Experiments were done at room temperature.

Measurement of membrane capacitance

Membrane capacitance was assessed using a two-sine voltage stimulus protocol superimposed onto a voltage ramp (200 ms duration) from –150 to +140 mV. Capacitance data were fit to the first derivative of a two-state Boltzmann function [12, 35, 36].

\[
Q(V) = \left(\frac{Q_{\text{max}}}{1 + \exp[-zF(V_m - V_{\text{peak}})/kT]} \right) + Q_{\text{min}}
\]

Where \(Q_{\text{max}}\) is the maximum non-linear charge moved, \(V_{\text{peak}}\) is voltage at peak capacitance or half maximum

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NLC</td>
<td>Nonlinear capacitance</td>
</tr>
<tr>
<td>(C_m)</td>
<td>Membrane capacitance</td>
</tr>
<tr>
<td>(C_{\text{mpeak}})</td>
<td>Peak capacitance</td>
</tr>
<tr>
<td>(V_m)</td>
<td>Membrane potential</td>
</tr>
<tr>
<td>(V_{\text{mpeak}})</td>
<td>Voltage at peak capacitance</td>
</tr>
<tr>
<td>(Q_{\text{max}})</td>
<td>Maximal charge movement</td>
</tr>
<tr>
<td>(z)</td>
<td>Valence</td>
</tr>
<tr>
<td>(C_{\text{lin}})</td>
<td>Linear membrane capacitance</td>
</tr>
<tr>
<td>GTP(\gamma)S</td>
<td>Guanosine 5’-O-(3-thiotriphosphate) tetrathiophilium salt</td>
</tr>
<tr>
<td>GDP(\beta)S</td>
<td>Guanosine 5’-(β-thio) diphosphate trilithium salt</td>
</tr>
</tbody>
</table>

Introduction

Outer hair cells (OHCs) elongate and shorten in response to electrical, mechanical, or chemical stimulation. These motile responses are crucial components of the cochlear amplifier which provide frequency selectivity and sensitivity of mammalian hearing [2, 3, 16, 36]. While OHCs’ electromotile responses arise from the motor protein, prestin, a modified anion exchanger [4, 9–11, 40, 41], actin-spectrin cytoskeleton lying beneath the plasma membrane helps maintain the cell shape and modulate the electromotility as well as contribute to the fine-tuning of the acoustic transduction process [3, 7]. These layers of OHCs’ lateral wall are connected together by “pillars” that play a role in the interaction between the plasma membrane and cytoskeleton (cortical lattice) [7, 39]. OHC electromotility is variable by many factors; intracellular turgor pressure, osmolarity, temperature, electrical field, drugs, and so on [17, 18, 23].

Cholesterol is an essential component of cell membranes, and determines their rigidity and fluidity. It is suggested that the cholesterol levels in the plasma membrane can affect the efficiency of the motor protein [1, 8, 37]. Changes in cholesterol level in the plasma membrane using methyl-β-cyclodextrin (MβCD) or water-soluble cholesterol affect the membrane capacitance, cell motility, stiffness, and cell length of OHCs [29, 33]. This suggests that cytoskeletal reorganization could be associated with membrane cholesterol levels. The Rho (Ras homologous) family of small GTPases plays a crucial role in cytoskeletal reorganization and mediates different types of motility by regulating the actin polymerization and depolymerization in nonauditory cell populations. Small GTPases RhoA, Rac1, and cdc42 have been identified as regulators of OHC motility [20]. In this study, we investigated intracellular signaling pathways involving G proteins to determine whether they modulate the cell changes derived by cholesterol alteration.
charge transfer, \(V_m \) is membrane potential, \(z \) is valence, \(C_{lin} \) is linear membrane capacitance, \(e \) is electron charge, \(k \) is Boltzmann’s constant, and \(T \) is absolute temperature.

Drugs

MβCD (methyl beta cyclodextrin Sigma; Sigma, C4555) is one of the family of cyclic oligomers of glucose, well known to remove cholesterol selectively from large unilamellar vesicles of various compositions [5]. In this study, MβCD was used to remove cholesterol from OHC plasma membrane [8, 32, 38]. Water-soluble cholesterol (cholesterol-methyl-beta-cyclodextrin/cholesterol-MβCD) (Sigma, C4951): a powder that is soluble in water at 200 mg/ml, contains approximately 40 mg of cholesterol per gram, and balanced with MβCD, was used to deliver cholesterol to OHC membrane [34]. These drugs were dissolved in external solution (1 mM) and applied continuously (1 ml/min) by the use of a multi barrel system (VC-6, Warner Instrument Corp. Hamden, USA). The tip of the multi barrel was located about 5 mm from the cell, permitting immediate exchange of the solution around the cell. One group of OHCs was treated with 100 \(\mu \)M guanosine 5/-O-(3-thiotriphosphate) tetralithium salt (GTPγS, Sigma G8634): G-protein activating analog of guanosine triphosphate (GTP) administered into the cell via patch pipettes. Another group of OHCs was treated in the same manner with 600 \(\mu \)M guanosine 5/-('β-thio) diphosphate tri-lithium salt (GDPβS, Sigma G7637)/GDP analog and generally used as a G-protein inhibitor. The third group was administered with internal solution only as a control. External perfusion buffer was delivered around the cells continuously (1 ml/min).

Statistical analysis

All data are shown as mean ± the standard deviation. The \(p \) value was analyzed by Mann–Whitney test, with \(p<0.05 \) being considered statistically significant.

![Figure 1](image)
Results

GTPγS inhibits the effect of MβCD

OHCs possess voltage-dependent nonlinear capacitance (NLC), which mirrors the charge movement in prestin and is characteristic of voltage-sensor activity. To study the effects of depleting cholesterol in the plasma membrane on NLC and cell shape, MβCD, which is known to remove the cholesterol in the plasma membrane, was applied by the use of a multi barrel system. Figure 1a shows a representative capacitance change at 0 mV induced by external application of MβCD. Immediately after the MβCD delivery, capacitance at 0 mV increased followed by a slow decrease. Figure 1b shows the changes of voltage-Cm (V-Cm) function measured by the same cell precisely before (0 min) and during extracellular application of 1 mM MβCD (4 min, 10 min) using a two-sine voltage stimulus protocol. MβCD application for 10 min shifted voltage at peak capacitance (Vcmpeak) to the depolarized direction by 67.5 mV and at the same time decreased peak capacitance (Cmpeak) by 8.87 pF.

To see the effects of G protein in the cholesterol depletion process, 100 μM GTPγS was internally applied. GTPγS itself did not change the V-Cm function up to 10 min (n=3; data not shown). Figure 1c shows an effect of external application of MβCD on capacitance of OHCs internally perfused with 100 μM GTPγS. After the MβCD delivery, capacitance at 0 mV increased slowly. Figure 1d shows the changes of the V-Cm function measured in the same cell at 0, 4, and 10 min after the application of MβCD. Vcmpeak was shifted to the depolarized direction by 26.3 mV, and Cmpeak decreased 6.63 pF at 10 min. These results indicate that effects of MβCD were attenuated by GTPγS.

Figure 2a–c show the average changes in Vcmpeak, Cmpeak, and cell length up to 10 min with and without internally perfused GTPγS, respectively. The shifts of the Vcmpeak and the Cmpeak decrease were inhibited in the GTPγS-treated group. The shifts of the Vcmpeak and the Cmpeak decreases at each point were statistically significant (p<0.05). After the 10-min application of MβCD, the Vcmpeak shifts of the control (n=4) and GTPγS-treated groups (n=7) were 72.32±11.09 and 9.73±10.92 mV, respectively, and the Cmpeak decrease of the control and GTPγS groups were 9.09±2.10 pF and 3.08±1.91 pF, respectively. The cell length of the control group decreased immediately while the length decrease of the GTPγS-treated group was inhibited. The results of 1, 5, 8, and 10 min showed that the length decreases at each point were statistically significant (p<0.05). After the 10-min application of MβCD, cell length change of the control and GTPγS-treated groups were 16.53±4.27 and 6.45±6.22 %, respectively.

When OHCs were treated with GDPβS by the same protocol, no statistical changes in Vcmpeak and Cmpeak were seen between GDPβS-treated cells and control cells (Fig. 3a, b).
Fig. 2 a Inhibition of MβCD-induced changes in \(V_{\text{cmpeak}} \) by GTP\(\gamma \)S. The \(V_{\text{cmpeak}} \) of the control group shifted to the depolarized direction after the MβCD application, while the voltage shifts of the GTP\(\gamma \)S-treated group were inhibited. The results of 4 to 16 min showed that voltage shifts at each point were statistically significant (\(p<0.05 \)). After the 10-min application of MβCD, \(V_{\text{cmpeak}} \) shifts of the control (\(n=4 \)) and GTP\(\gamma \)S groups (\(n=7 \)) were 72.32±11.09 and 9.73±10.92 mV, respectively. (\(^* p<0.05, ^{**} p<0.01 \)). b Inhibition of MβCD-induced changes in \(C_{\text{mpeak}} \) by GTP\(\gamma \)S. The \(C_{\text{mpeak}} \) of the control group decreased after the MβCD application, while the decreases of the GTP\(\gamma \)S-treated group were inhibited. The result of 4 to 10 min showed that the \(C_{\text{mpeak}} \) decreases at each point were statistically significant (\(p<0.05 \)). After the 10-min application of MβCD, \(C_{\text{mpeak}} \) shifts of the control and GTP\(\gamma \)S groups were −9.09±2.10 pF and −3.08±1.91 pF, respectively. (\(^* p<0.05, ^{**} p<0.03, ^{***} p<0.01 \)). c Inhibition of MβCD-induced changes in cell length by GTP\(\gamma \)S. The cell length of the control group decreased immediately while the length decrease of the GTP\(\gamma \)S group was inhibited. The results of 1, 5, and 10 min showed that the length decreases at each point were statistically significant (\(p<0.05 \)). After the 10-min application of MβCD, cell length change of the control and GTP\(\gamma \)S groups were 16.53±4.27 % and 6.45±6.22 %, respectively (\(^* p<0.05 \)).

GDP\(\beta \)S inhibits the effect of cholesterol

In reverse, the effects of loading cholesterol in the plasma membrane were tested by water-soluble cholesterol (cholesterol-MβCD). Rajagopalan et al. demonstrated that loading excess cholesterol shifted \(V_{\text{cmpeak}} \) toward hyperpolarizing voltages after depletion of cholesterol shifted \(V_{\text{cmpeak}} \) in the depolarizing direction [32, 33]. To clarify the effects of cholesterol on \(C_{\text{m}} \), MβCD was applied for 4 min before application of the cholesterol, because the shift of \(V_{\text{cm}} \) function caused by cholesterol alone was small and time course of the voltage shift was variable.

Continuous measurement of \(C_{\text{m}} \) at 0 mV showed that 1 mM water-soluble cholesterol shifts the \(C_{\text{m}} \) in the opposite direction of MβCD (Fig. 4a). \(V_{\text{cm}} \) function was measured using a two-sine voltage stimulus protocol before cholesterol application, and 6, 10 min application of cholesterol (Fig. 4b). After the 10-min cholesterol application, \(V_{\text{cmpeak}} \) was shifted to the hyperpolarized direction by 7.68 mV, and the \(C_{\text{mpeak}} \) increased 2.83 pF.

OHCs administered with GDP\(\beta \)S showed different results. Figure 4c shows a representative \(C_{\text{m}} \) change of OHC internally perfused with 600 \(\mu \)M GDP\(\beta \)S. Application of MβCD increased the \(C_{\text{m}} \) at 0 mV immediately as in the control cells without 600 \(\mu \)M GDP\(\beta \)S. However, switching to cholesterol did not cause obvious changes of \(C_{\text{m}} \) at 0 mV. \(V_{\text{cm}} \) function shows that the shift of \(V_{\text{cmpeak}} \) and decrease of \(C_{\text{mpeak}} \) are much smaller than those in the control cells after the 10-min application of cholesterol. The \(V_{\text{cmpeak}} \) was shifted to the depolarized direction by 3.84 mV, and \(C_{\text{mpeak}} \) decreased 0.42 pF after the 10-min application of cholesterol (Fig. 4d).

Fig. 3 a, b No inhibition of MβCD-induced changes in \(V_{\text{cmpeak}} \) and \(C_{\text{mpeak}} \) by GDP\(\beta \)S. OHCs were treated with GDP\(\beta \)S by the same protocol as GTP\(\gamma \)S, then no statistical changes in \(V_{\text{cmpeak}} \) and \(C_{\text{mpeak}} \) were seen between GDP\(\beta \)S-treated cells and control cells. After the 10-min application of MβCD, \(V_{\text{cmpeak}} \) shifts of the control (\(n=4 \)) and GDP\(\beta \)S groups (\(n=4 \)) were 72.32±11.09 and 65.43±6.85 mV, respectively and \(C_{\text{mpeak}} \) shifts of the control and GDP\(\beta \)S groups were −9.09±2.10 and −6.35±4.05 pF, respectively.

Figure 5a and b show the average changes in \(V_{\text{cmpeak}} \) and \(C_{\text{mpeak}} \) up to 10 min with and without internally perfused GDP\(\beta \)S. The shifts of the \(V_{\text{cmpeak}} \) and the \(C_{\text{mpeak}} \) increase were inhibited in the GDP\(\beta \)S-treated group. The shifts of the \(V_{\text{cmpeak}} \) and the \(C_{\text{mpeak}} \) decrease at each point were statistically significant (\(p<0.05 \)). After the 10-min application of cholesterol, the \(V_{\text{cmpeak}} \) shifts of the control (\(n=4 \)) and GDP\(\beta \)S-treated groups (\(n=6 \)) were −9.19±6.68 and 5.13±10.46 mV, respectively, and the \(C_{\text{mpeak}} \) change of the control and GDP\(\beta \)S-treated groups were 2.14±0.44 pF and −0.55±1.39 pF, respectively.
Discussion

Cholesterol alteration of OHC membrane induces changes of the stiffness, capacitance, motility, and cell length [7, 29, 31]. The effects of MβCD application on capacitance are quite similar to those of increasing the membrane tension [17]. This similarity suggests that depleting cholesterol may decrease the rigidity of both plasma membrane and cortical lattice, resulting in increase of tension in the less rigid plasma membrane. Indeed, our preliminary data showed that externally applied MβCD reduced stiffness of the OHCs [24]. Huang et al. indicated that cell shape change caused by intracellular trypsin treatment itself did not affect the NLC [15]. Kakehata et al. also demonstrated that the OHCs treated by trypsin showed no change of C_{mpeak} and V_{cmpeak} in constant pressure [17]. However, based on these results, the dramatic effects of MβCD on OHCs are difficult to explain only by the membrane tension change. The electromechanically evoked cell movements and the prestin-associated currents are modulated by agents that alter the material properties of the membrane and cholesterol has been known to alter membrane material properties. In the present paper, we showed that a decrease in outer hair cell length as cholesterol was removed from the membrane (Fig. 2c) for the first time although mechanism of how to maintain the outer hair cell length remained to be explored.

To explain the mechanism of capacitance, motility, and cell length changes caused by MβCD, we focused on G protein. The results of the present study raise the possibility that G proteins may be involved in outer hair cell homeostasis as well as the possibility that cholesterol response is G protein mediated. Membrane-associated G proteins are involved in numerous signaling cascades. When the cholesterol in the membrane changes, it is likely that compensatory homeostatic mechanism maintains the prestin-associated charge movement and cell length at their initial values work. Our results using the GTP and GDP analogues suggest that G protein facilitates the compensatory homeostatic mechanism in OHCs.
and regulate the motility by minimizing application of cholesterol, which showed that the differences in the shift at each point were statistically significant (**p < 0.01). After the 10-min application of cholesterol, the shifts of the control group increased after the cholesterol application, while the increases of the GDP analog groups were 2.14±0.44 pF and 9.19±6.68 and 5.13±10.46 mV, respectively. (*p < 0.05; **p < 0.01; ***p < 0.001).

In addition, compensatory homeostatic mechanisms may be involved in these changes. G protein is known to regulate the actin turnover via intracellular signaling pathways. Small GTPases such as RhoA, Rac1, and cdc42 are proved to be expressed in guinea pig OHCs and regulate the motility [20]. In this study, GTPyS (GTP analog), known to induce the actin polymerization [21], was administered via patch pipette to activate the GTPases. As a result, administration of GTPyS suppressed the effect of MβCD. On the other hand, administration of GDPβS (GDP analog), which is known to inactivate GTPases, suppressed this effect of water-soluble cholesterol. These results suggest that G-protein-mediated intracellular signaling pathways may regulate the OHC’s cytoskeletal reconstruction triggered by cholesterol alteration, although detailed mechanisms remain to be demonstrated.

In general, RhoA, Rac1, and cdc42 are well known to play crucial roles in stress fiber formation, lamellipodia, and filopodia, respectively. These are the important processes of cell movement such as migration and division in nonadherent cells [13, 20]. However, OHCs are highly differentiated and have lost their faculties of migration and division. As the expected substitute ability, they can change their length and adjust the function of cochlear amplification depending on the biotic condition (e.g., hyperlipidemia, dehydration, and so on) [31]. Several lines of evidence indicate that small GTPases may be adapted to regulation of cytoskeletal re-construction. Pivola et al. demonstrated that the c-Jun-N-terminal kinase (JNK) pathway is associated with stress, injury, and apoptosis of OHCs, and blocking the activation of this pathway protects the OHCs from noise trauma and aminoglycoside toxicity [30]. Bodmer et al. demonstrated that small GTPases are to be the upstream activator of the JNK pathway in OHCs [6]. These results show that small GTPases play a crucial role of regulating the cytoskeletal reorganization and maintenance in OHCs. Recent study also indicates lipid rafts regulate the actin cytoskeleton by intracellular signaling pathways in T-cells [28]. However, precise roles of lipid rafts, which regulate the actin cytoskeleton in OHCs remain to be demonstrated.

The possibilities raised in this study should be investigated by several experiments. Histological experiments using a photomicrogram would detect the changes in F-actin in GTPyS-treated OHCs. Indeed, Khatibzadeh recently reported that F-actin depolymerization reduces the effect of cholesterol depletion on membrane mechanics, suggesting the possibility that cortical lattice may directly influence outer hair cell membrane mechanics [22]. The change in cytoskeletal–membrane interactions mechanics with change in cholesterol concentration is consistent with the change in prestin function observed in the present study. Measurement of the membrane stiffness in GTPyS-treated OHCs by atomic force microscopy would enhance the result. It is also necessary to investigate the involved G-protein-mediated intracellular signaling pathways. Effects of selective antagonists for small GTPs such as toxin B from Clostridium difficile (specific inhibitor of RhoA, Rac1, and Cdc42), exoenzyme C3 from C. difficile (specific RhoA inhibitor), and dominant negative of Rac1 and Cdc42 (dnRac1 and dnCdc42) is necessary to investigate the involved G-protein-mediated intracellular signaling pathways.
dnCdc42) would enhance the results. Constitutively activated mutants of the small GTPases (RhoAQL, Rac1QL, and Cdc42QL) also should be tried. The results of these agents would demonstrate the possibility of participation of small GTPases in the signaling pathways.

Conclusion

In conclusion, this study suggested that intracellular signaling pathways involving G proteins might play role in cholesterol alteration process. More study is required to clarify the detailed role of G proteins in the relation between cholesterol and the OHC cytoskeleton.

Acknowledgments

This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture of Japan (S.K). The authors would like to thank Ms. A. C. Apple-Mathews for valuable suggestions concerning English usage.

References