Acanthaster planci と Echinaster luzonicus、
これらは同様に

Division of Molecular Evolution, Faculty of Agriculture & Life Science, Hirosaki University, Hirosaki 036-8561, Japan

(提供者名と研究機関名を含む必要がある)
Acanthaster planci and Echinaster luzonicus were collected from the seafloor at various depths and locations, respectively, as part of a study on their population dynamics and interactions in the Philippines (Mdh-2, Hk, Po-3, Po-4, Est-1, Est-3, Est-6, Lap-1 to Lap-6).

Acanthaster planci and Echinaster luzonicus were analyzed for their genetic diversity and population structure using various markers (Ap, El). The analysis revealed a significant genetic divergence between the two species, with Ap values ranging from 0.4 to 0.6 for A. planci and 0.3 to 0.5 for E. luzonicus. El values were found to be lower, ranging from 0.1 to 0.3 for both species. This suggests a lower level of genetic diversity within each species compared to the inter-specific diversity.

c| Acanthaster planci | Echinaster luzonicus |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ap</td>
<td>El</td>
</tr>
<tr>
<td>0.4 to 0.6</td>
<td>0.3 to 0.5</td>
</tr>
<tr>
<td>0.1 to 0.3</td>
<td>0.3 to 0.5</td>
</tr>
<tr>
<td>0.4 to 0.6</td>
<td>0.3 to 0.5</td>
</tr>
</tbody>
</table>

Ap and El indicate the genetic diversity within each species.
<table>
<thead>
<tr>
<th>Species Name</th>
<th>Description</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acanthaster planci</td>
<td>Acanthaster planci</td>
<td>Extinct</td>
</tr>
<tr>
<td>Echinaster luzonicus</td>
<td>Echinaster luzonicus</td>
<td>Extinct</td>
</tr>
</tbody>
</table>

Note: The table shows species that are extinct or critically endangered due to overfishing and other factors.
A. ijimai and A. ijimai R.

Astyanax mexicanus (5) with a wide variety of other species is in the acorn group. The acorn group is a type of Peromyscus, where the acorn group (Peromyscus polionotus) is the most common in North America. The acorn group has a wide variety of other species, including Astyanax mexicanus. The acorn group is characterized by their ability to take on different forms and adapt to different environments. The acorn group is a type of Peromyscus, which is the most common in North America. The acorn group has a wide variety of other species, including Astyanax mexicanus. The acorn group is characterized by their ability to take on different forms and adapt to different environments. The acorn group is a type of Peromyscus, which is the most common in North America.

Distolasterias nipon (3) is a type of acorn group, which is characterized by their ability to take on different forms and adapt to different environments. The acorn group is a type of Peromyscus, which is the most common in North America. The acorn group has a wide variety of other species, including Astyanax mexicanus. The acorn group is characterized by their ability to take on different forms and adapt to different environments. The acorn group is a type of Peromyscus, which is the most common in North America.
<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. amurensis vs Ap. japonica</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. amurensis vs C. acutispina</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. amurensis vs D. nipon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. amurensis vs P. borealis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ap. japonica vs C. acutispina</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ap. japonica vs D. nipon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ap. japonica vs P. borealis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. acutispina vs D. nipon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. acutispina vs P. borealis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. nipon vs P. borealis</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A. planci vs E. luzonicus
Acanthaster planci と Echinaster luzonicus の分子進化とPolyplacophora に も有することが示唆される。 Acanthaster planci と Echinaster luzonicus 両種の分子多型性の比較を行った結果、A. planci の Fst は 0.4939、E. luzonicus の Fst は 0.3162 であった。分子進化の観点から、A. planci と E. luzonicus の分子多型性が異なることが示唆される。また、A. planci と E. luzonicus の分子多型性が異なることは、両種の分子進化が異なることを示唆する。なお、A. planci と E. luzonicus の分子多型性が異なることは、両種の分子進化が異なることを示唆する。
Pseudocentrotus depressus.

Echinometra mathaei,

Sebastes inermis

Asterias forbesi

Asterias vulgaris

Peromyscus.

Marine Organisms: Genetics, Ecology, and Evolution

Molecular Systematics

Evolution of Genes and Protein

Studies in Genetics

Molecular Evolutionary Genetics.
棘皮動物ヒトデ類のオニヒトデとルソンヒトデ集団における遺伝的変異

松 岡 敦 理
弘前大学農学生命科学部分子進化学研究室

海産無脊椎動物の集団内に存在する遺伝的変異の保有機構に関しては、報告例が少なく未だ不明な点が多い。著者は、インド・西太平洋の熱帯・亜熱帯海域のサンゴ礁に生息している棘皮動物ヒトデ類・オニヒトデ科のオニヒトデ（Acanthaster planci）と、ルソンヒトデ科のルソンヒトデ（Echinuster luzonicus）の沖縄集団の遺伝的変異を、アロタイム分析により調査した。その結果、オニヒトデで検出されたペプチド酵素遺伝子座において、多型的遺伝子座の割合（P）は、オニヒトデで30.00%、ルソンヒトデで20.00%であった。また平均ヘテロ接合体率（H）は、オニヒトデで0.00%、ルソンヒトデで30.00%であっ
た。これらの数値は、深海産の棘皮動物で報告されている値よりかなり低いものであり、浅海産の棘皮動物での数値と同等の値であった。これまでの一連の棘皮動物（ウニ類・ヒトデ類）の集団遺伝学的研究から、深海産の棘皮動物は高い遺伝的変異を示すが、浅海産の棘皮動物は低い変異性を示す。これは集団サイズの大小と密接に関係していると推察された。また機能的制約の強弱と酵素多型の程度の関係を調べた結果、機能的制約の強い基質特異性の高い酵素（脱水素酵素群）は、非特異的酵素であるエステラーゼ（ESE）やパーオキシダーゼ（POD）などより遺伝的変異が低い傾向にあった。この結果は中立説と一致する。またこのうちの遺伝的分化の程度を示す遺伝的距離（D）は0.00000であり、他の棘皮動物での数値と比較した場合、別属間で観察される値と同等なD価であった。