DIFFERENTIATION INHIBITION OF REGULATORY T CELLS IN HIROSAKI HAIRLESS RAT DUE TO DELETION OF THE LY49 FAMILY GENES EXPRESSED IN THYMIC T CELLS AND DENDRITIC CELLS

Toshiyuki Yamada1, Naoki Nanashima1,2, Takeshi Shimizu1 and Shigeki Tsuchida1

Abstract The Hirosaki hairless rat (HHR) is a mutant strain derived from the Sprague-Dawley rat (SDR). The HHR thymus was markedly small and showed underdeveloped medulla. In the HHR thymus, CD4 levels were decreased, suggesting that differentiation of CD4-positive T cells is disturbed. Because naturally occurring regulatory T (nTreg) cells complete the differentiation in the thymus, the maturation status of the cells was examined in the HHR thymus. Real-time PCR revealed reduced expression of the Foxp3 and CD25 (IL-2Rα) genes, important for nTreg differentiation, and flow cytometric analysis showed decreased number of CD4+CD25+Foxp3+ nTreg cells, indicating that mature nTreg formation is repressed. To explore genes responsible for the failure of nTreg differentiation, comparative genome hybridization array was performed using DNA from HHR and SDR. This analysis identified two regions deleted on HHR chromosome 4. One region contained the Klra17 (similar to Ly49si1) gene and the other the Ly49s3, Ly49s4, Ly49i3 and Ly49i4 genes. RT-PCR of T cells and dendritic cells (DCs) isolated from the SDR thymus revealed that the Klra17 gene was expressed in CD4-single positive (CD4-SP) cells and the Ly49s3 gene in DCs, indicating that HHR loses expression of the Klra17 and Ly49s3 genes in thymic CD4-SP cells and DCs, respectively. The mixed culture of CD4-SP cells and DCs from the HHR thymus exhibited poor nTreg differentiation. Taken together, these results suggest that the Klra17 and Ly49s3 genes are responsible for the differentiation of nTreg cells.

Key words: regulatory T cell; the Ly49 family genes; Hirosaki hairless rat

Introduction

Lymphocyte differentiation is a highly orchestrated process tightly regulated by interaction between lymphocytes and the cells supporting their differentiation. In the thymus, T cells are positively and negatively selected via interaction with antigen-presenting stromal cells including thymic epithelial cells and dendritic cells (DCs)1,2. These processes are mediated by a wide variety of molecules produced by these cells such as TCR, CD4, CD8, MHC, costimulatory molecules, cytokines and chemokines1,3. Disruption of the regulatory system for T cell differentiation results in inappropriate suppression or activation of effector functions of lymphocytes which lead to immunosuppressive or autoimmune states4-6. A precise analysis of these immune disorders will improve understanding of the regulatory mechanisms of lymphocyte differentiation.

The Hirosaki hairless rat (HHR), spontaneously derived from the Sprague-Dawley rat (SDR) in our laboratory in 1985, is a mutant strain with a nearly bare phenotype which is inherited in an autosomal recessive manner7. We have recently demonstrated a deletion of 80 kb of genomic DNA in the q36 region on chromosome 7 containing

1Department of Biochemistry and Genome Biology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
2Department of Biomedical Science, Hirosaki University Graduate School of Health Science, Hirosaki, Japan
Corresponding author: Toshiyuki Yamada, Department of Biochemistry and Genome Biology, Hirosaki University Graduate School of Medicine, phone: 81-172-39-5019, fax: 81-172-39-5205, e-mail: tyamada@cc.hirosaki-u.ac.jp
five basic keratin genes in HHR as the reason for the hairless phenotype. The most famous hairless animals are nude mice and rats. In these animals, the Foxn1 gene, encoding a transcription factor critical to the differentiation and survival of thymic and skin epithelial cells, is mutated and this mutation results in both of hairless phenotype and severe thymic defects leading to a loss of T cell development. Other than Foxn1 mutation, defects of the genes like IL-2R, Jak3, IL-7R, Rag1, Rag2, and ADA have been reported as the reasons of severe combined immunodeficiencies in humans and animals. Prompted by this line of knowledge, we assessed immunological features of HHR and obtained evidence indicating the lymphoid abnormalities in HHR. We here describe developmental failure of regulatory T cells in HHR.

The thymus is underdeveloped in HHR

In the HHR peripheral blood, white blood cell count (WBC) was decreased, while red blood cell count, hematocrit level and hemoglobin concentration were similar in comparison with those in the SDR peripheral blood. The morphological analysis of leukocytes revealed a decrease in lymphocytes in the HHR peripheral blood. Among the lymphoid organs, whereas no remarkable difference in appearance and weight of the spleens was observed between HHR and SDR, the thymus of HHR was markedly smaller than that of SDR. Histological analysis showed that the medulla, the site of T cell maturation, was underdeveloped in the HHR thymus. From these findings, it is speculated that differentiation of T cells is disturbed in the HHR thymus.

Expression of the Ly49 family genes are lost in CD4-SP cells and DCs in the HHR thymus

The next interest is identification of the gene(s) for the failure of nTreg differentiation in the HHR thymus. To address this matter, comparative genome hybridization (CGH) array analysis was performed using genomic DNAs from HHR and SDR. This analysis revealed two regions deleted on HHR chromosome 4. One region contained the Klra17 (similar to Ly49si1) gene and the other the Ly49s3, Ly49s4, Ly49i3 and Ly49i4 genes. The Ly49 family proteins were originally identified as receptors on the surface of natural killer (NK) cells for MHC class I molecules on the target cells. When they bound to MHC class I molecules, they transmit
inhibitory signals to prevent NK cells from mediating cytotoxicity13. It is known that some members of Ly49 family proteins are expressed on T cells and DCs14-17. The function of these members is supposed to be different from that of the members on NK cells. We examined whether the Ly49 family genes deleted in HHR are expressed in the thymus of normal rat. RT-PCR analysis showed that the Klra17 and Ly49s3 genes were expressed in the SDR thymus. Further analysis with fractionated cells from the HHR thymus revealed that the Klra17 gene was expressed in CD4-SP cells and the Ly49s3 gene in DCs. It is, thus, indicated that HHR loses expression of the Klra17 and Ly49s3 genes in CD4-SP cells and DCs, respectively.

We previously demonstrated deletion of five basic keratin genes in HHR8. However, expression of these genes were hardly detected in the SDR thymus, suggesting that they have no correlations with T cell development and are not the causal genes of the differentiation inhibition of nTreg cells in the HHR thymus.

Co-culture of CD4-SP cells and DCs from the HHR thymus fails to differentiate into regulatory T cells

The above results prompt us to perform experiments to assess whether differentiation potential of CD4-SP cells and/or differentiation-promoting potential of DCs are altered in the HHR thymus. To this end, we isolated these cells and co-cultured them, and determined expression levels of the genes involved in nTreg differentiation and function. The results showed that expression levels of the c-Fos, IL-2, CD25, CTLA4 and PD-1 genes, markers for T cells, were lower in the co-culture of cells from the HHR thymus in comparison with that in the co-culture of the SDR cells. Addition of IFN\textalpha, usually functions as an activator of lymphocytes and DCs, further downregulated expression of these genes in the co-culture of the HHR cells, whereas upregulated expression of all genes except the CTLA4 gene in the co-culture of the SDR cells. These results suggest that CD4-SP cells from the HHR thymus are

Figure 1. Differentiation inhibition of nTreg cells in the HHR thymus.

In the HHR thymus, expression levels of the CD4, Foxp3 and CD25 (IL-2R\alpha) genes, important for differentiation of nTreg cells, were lower than that in the SDR thymus. The number of CD4+CD25+Foxp3+ nTreg cells was actually decreased in the HHR thymus.
not differentiated effectively into regulatory T cells after stimulation with DCs from the HHR thymus. Given that the interaction between CD4-SP cells and DCs is important for nTreg differentiation and the Ly49 family members are cell surface receptors mediating cell-cell interaction, alterations in both cell types due to deletion of the Klra17 and Ly49s3 genes may lead to the differentiation inhibition of nTreg cells in the HHR thymus (Fig. 2).

Conclusion

In this article, we described immunological feature of HHR, showing low WBC count in the peripheral blood, small thymus, differentiation failure of nTreg cells in the thymus, loss of expression of the Klra17 and Ly49s3 genes in CD4-SP cells and DCs in the thymus, respectively, due to deletion of the genes. We also described decreased expression of the genes associated with differentiation and function of nTreg cells in the co-culture of CD4-SP cells and DCs from the HHR thymus. These results suggest that loss of expression of the Klra17 and Ly49s3 genes in CD4-SP cells and DCs, respectively, is responsible to differentiation inhibition of nTreg cells in the HHR thymus. Further studies to directly demonstrate this notion are being performed in our laboratory.

Acknowledgments

We thank Ms. Yuko Tsushima for support with the flow cytometric analysis.

References

