<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td><スラグセミナー>睡眠覚醒制御の分子メカニズム</td>
</tr>
<tr>
<td>著者</td>
<td>岩田 良広</td>
</tr>
<tr>
<td>引用</td>
<td>弘前医学 61(Suppl.), 2010, p.S164-S173</td>
</tr>
<tr>
<td>発行日</td>
<td>2010-07-08</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10129/3683</td>
</tr>
<tr>
<td>資権</td>
<td>テキスト versions: プレーヤー</td>
</tr>
</tbody>
</table>

弘前大学リポジトリ・学術資源

弘前大学

HIROSAKI UNIVERSITY

弘前大学リポジトリ・学術資源
MOLECULAR MECHANISM OF SLEEP-WAKE REGULATION

Yoshihiro Urade

Abstract Prostaglandin (PG) D$_2$ is the most potent endogenous sleep-promoting substance thus far reported and its sleep-inducing mechanism is the best characterized at the molecular level. PGD$_2$ is produced by lipocalin-type PGD synthase (L-PGDS) localized in the leptomeninges, choroid plexus, and oligodendrocytes in the brain and is secreted into the cerebrospinal fluid as a sleep hormone. PGD$_2$ stimulates DP$_1$ receptors localized in the arachnoid membrane at the basal forebrain to release adenosine as a paracrine sleep-promoting molecule, which activates adenosine A$_{2A}$ receptor-expressing neurons located in the basal forebrain. These cells subsequently excite the sleep-active neurons in the ventrolateral preoptic area and concomitantly suppress the tuberomammillary nucleus, a histaminergic arousal center, through GABAergic and galaninergic inhibitory projection, to induce sleep. The administration of a PGD synthase inhibitor (ScCl$_2$), DP$_1$ antagonist (ONO-4127Na) or adenosine A$_2$ receptor antagonist (caffeine) induces insomnia, indicating that the PGD$_2$-adenosine system is crucial for the maintenance of physiological sleep.

Key words: prostaglandin D$_2$; adenosine; ventrolateral preoptic area; tuberomammillary nucleus; histamine

Introduction

The humoral theory of sleep regulation, the concept that sleep and wakefulness are induced and regulated by a hormone-like chemical substance rather than by a neural network, was initially proposed by Kunio Ishimori of Nagoya, Japan, in 1909 and independently and concurrently, by a French neuroscientist, Henri Piéron of Paris, in 1913 (Fig. 1). They took samples of the brain and cerebrospinal fluid (CSF) from sleep-deprived dogs and infused them into the brains of normal dogs. The recipient dogs soon started to sleep. Thus these scientists became the pioneers of sleep research, demonstrating the existence of endogenous sleep-promoting substances. However, the chemical nature of their sleep substance(s) was not identified. During the 20th century, numerous investigators have reported more than 30 so-called endogenous sleep- and wake-promoting substances in the brain, CSF, and urine of animals and humans. Among them, prostaglandin (PG) D$_2$ is now recognized as the most potent endogenous sleep-promoting substance; and its action mechanism to induce sleep is the best characterized.

Sleep induction by Prostaglandin (PG) D$_2$

PGs are a group of 20-carbon polyunsaturated fatty acids containing a unique 5-carbon ring

Figure 1 Photos of Dr. Ishimori and Dr. Pieron.
structure. PGs of the 2 series, such as PGD₂, PGE₂, PGF₂α, PGI₂ (prostacyclin), and thromboxane A₂, are all produced from arachidonate (C₂₀:₄ fatty acid) via a common intermediate, PGH₂, which is produced by the action of cyclooxygenase, a target of non-steroidal anti-inflammatory drugs such as aspirin and indomethacin. Each prostanoid is then produced from PGH₂ by its terminal PG synthase, e.g., PGD synthase (PGDS) in the case of PGD₂. PGD₂ had long been considered as a minor and biologically inactive PG. However, in the 1980’s, this prostanoid was found to be the most abundant PG produced in the brains of rats¹ and other mammals including humans², suggesting that PGD₂ may serve some important function in the central nervous system (CNS).

During the search for the neural function of PGD₂, its sleep-inducing activity was discovered³, as evidenced by the fact that the microinjection of nano-molar quantities of PGD₂ into the rat brain increased both non-rapid eye movement (non-REM, NREM) and REM sleep. By using a sleep bioassay system based on the recording of both electroencephalogram and electromyogram during the continuous intracerebroventricular infusion of drugs into freely moving rats, the somnogenic activity of PGD₂ was demonstrated to be dose and time dependent⁴. The PGD₂-induced sleep was indistinguishable from physiological sleep as judged by several electrophysiological and behavioral criteria. For example, during the PGD₂ infusion, rats were easily aroused by clap sound stimulation; and their sleep was episodic, indicating that PGD₂ does not interfere with the minimum time awake for their survival. Essentially the same sleep induction was demonstrated in the rhesus monkey Macaca mulatta during the intracerebroventricular infusion of PGD₂⁵.

The PGD₂ concentration in rat CSF showed a circadian fluctuation that paralleled the sleep-wake cycle⁶ and became elevated with an increase in sleep propensity during sleep deprivation⁷. PGD₂ was reported to be involved in the pathogenesis of mastocytosis, a disorder characterized by episodic and endogenous production of PGD₂ accompanied by deep sleep episodes⁸. PGD₂ concentrations were selectively and time-dependently elevated in the CSF of patients with African sleeping sickness, which is caused by infection with Trypanosoma⁹. These findings suggest that PGD₂ induces sleep in humans as well as in rodents and monkeys.

PGDS and PGD₂ receptor in CNS

There are two distinct types of PGDS (PGH₂ D-isomerase, EC.5.3.99.2): one is lipocalin-type PGDS (L-PGDS)¹⁰ and the other, hematopoietic PGDS (H-PGDS)¹¹,¹². We purified L-PGDS and H-PGDS, isolated their cDNAs and chromosomal genes of the human and mouse enzymes, determined their X-ray crystallographic structures, and demonstrated that these two enzymes are quite different from each other in terms of their amino acid sequence, tertiary structure, evolutionary origin, cellular distribution, etc.¹³,¹⁴ Two distinct subtypes of receptors for PGD₂ have been identified; one is the DP₁ (DP) receptor originally identified as a homolog of other PG receptors¹⁵ and the other is the DP₂ (CRTH2) receptor, identified as a chemoattractant receptor for PGD₂¹⁶. We developed inhibitors selective for either L-PGDS or H-PGDS (AT-56²⁷ and HQL-79²⁸, respectively). Selective agonists and antagonists for DP₁ or DP₂ are also available. These pharmacological tools are used for various studies including those on sleep.

L-PGDS and the DP₁ receptor are involved in the regulation of physiological sleep, as described later in detail. L-PGDS is localized in the leptomeninges, choroid plexus, and oligodendrocytes in the brain¹⁹,²⁰. The DP₁ receptor is highly concentrated in the leptomeninges on the ventral surface of the rostral basal forebrain, whereas other brain areas are almost completely
negative21. The DP\textsubscript{1}-enriched leptomeninges was immunohistochemically defined as bilateral wings in the rostral basal forebrain lateral to the optic chiasm in the proximity of the posterior hypothalamus, which contains sleep-wake regulation centers31. L-PGDS is the only member associated with enzyme activity in the lipocalin gene family, which comprises various secretory proteins that bind and transport small hydrophobic substances22,23. Having a molecular weight of 26,000 daltons, L-PGDS is composed of 189 and 190 amino acid residues in the mouse and human enzymes, respectively, and is post-translationally modified by the cleavage of an N-terminal hydrophobic signal peptide comprising 24 and 22 amino acid residues in the mouse and human enzymes, respectively, and by N-glycosylation at 2 positions (Asn\textsubscript{51} and Asn\textsubscript{78}) in the mouse and human enzymes. We recently determined the X-ray crystallographic structure of 2 different conformers of L-PGDS, i.e., one with an open and the other with a closed calyx, at 2.1Å resolution24 and showed that L-PGDS possesses a typical lipocalin-fold, β-barrel structure with a large hydrophobic pocket containing the catalytically essential Cys-65 residue.

L-PGDS is the same protein as β-trace25,26, which was originally discovered in 1961 as a major protein of human CSF27. The serum L-PGDS/β-trace concentration shows a circadian change with a nocturnal increase, which is suppressed during total sleep deprivation but not affected by deprivation of REM sleep28. We recently found that L-PGDS/β-trace binds PGD\textsubscript{2} with a high affinity (Kd = 20 nM; Aritake K. and Y.U., unpublished results), suggesting that PGD\textsubscript{2} may circulate within the CSF as a form bound to L-PGDS/β-trace and be transported to the DP\textsubscript{1} receptor to initiate NREM sleep.

![Figure 2](image.png)

The molecular mechanisms of PGD\textsubscript{2}-induced sleep

We modified the sleep bioassay system to monitor the electroencephalogram and electromyogram of freely moving mice during continuous intracerebroventricular infusion of drugs (Fig. 2), developed SLEEPSIGN software (Kissei Comtec, Nagano, Japan) for automatic scoring of the vigilance states of rats and mice29, and used these systems and software to study the molecular mechanism of PGD\textsubscript{2}-induced sleep (Fig. 3).

When PGD\textsubscript{2} was infused into the subarachnoid space of the basal forebrain of wild-type mice, in which DP\textsubscript{1} receptors are remarkably abundant, the extracellular adenosine concentration was increased dose-dependently. The PGD\textsubscript{2}-induced increase in extracellular adenosine was not observed in KO mice for DP\textsubscript{1} receptors, indicating that the increase in adenosine is dependent on the DP\textsubscript{1} receptors30.

Adenosine has been proposed to be an endogenous sleep substance, as a number of stable adenosine analogues induce sleep when administered to rats and other experimental animals. When CGS21680, an A\textsubscript{2A} receptor agonist, was infused into the lateral ventricle of
wild-type mice, NREM sleep was induced dose-dependently; whereas the A₁ receptor-selective agonist N⁶-cyclopentyladenosine was totally inactive, indicating that A_{2A}, but not A₁, receptors are involved in NREM sleep regulation³⁰. When PGD₂ or the A_{2A} receptor agonist CGS21680 was infused for 2 h into the PGD₂-sensitive zone of the subarachnoid space of the basal forebrain, the number of Fos-positive cells was remarkably increased in the leptomeningeal membrane as well as in the ventrolateral proptic (VLPO) area concomitant with the induction of NREM sleep³¹⁻³³. In contrast, the number of Fos-positive neurons decreased markedly in the tuberomamillary nucleus (TMN) of the posterior hypothalamus. The VLPO is known to send specific inhibitory GABAergic and galaninergic efferents to the TMN the neurons of which contain the ascending histaminergic arousal system³⁴ (Fig. 3).

The intracellular recording of VLPO neurons in rat brain slices demonstrated the existence of 2 distinct types of VLPO neurons in terms of their responses to serotonin and adenosine. VLPO neurons are inhibited uniformly by 2 arousal neurotransmitters, noradrenaline and acetylcholine, and mostly by an adenosine A₁R agonist. Serotonin inhibits the type-1 neurons but excites the type-2 neurons; whereas an A_{2A}R agonist excites postsynaptically the type-2, but not the type-1, neurons. These results suggest that the type-2 neurons are involved in the initiation of sleep and that the type-1 neurons contribute to sleep consolidation, since they are activated only when released from inhibition by arousal systems³⁵.

In vivo microdialysis experiments revealed that infusion of an adenosine A_{2A}R agonist, CGS21680, into the basal forebrain inhibited the release of histamine in both the frontal cortex and medial preoptic area in a dose-dependent manner, and increased the GABA release specifically in the TMN but not in the frontal cortex³⁶. The CGS21680-induced inhibition of histamine release was antagonized by perfusion of the TMN with a GABA_A antagonist, picrotoxin, suggesting that the A_{2A} agonist induced sleep by inhibiting the histaminergic system through an increase in GABA release in the TMN. These results support the original idea of the flip-flop mechanism, whereby sleep is promoted by up-regulation of the sleep neurons in the VLPO and at the same time down-regulation of the histaminergic wake neurons in the TMN, as mentioned by Saper and colleagues^{37,38}.

Sleep abnormalities in mice gene-manipulated for L-PGDS, DP₁, and A_{2A} receptors

We generated L-PGDS KO mice with the null mutation by homologous recombination³⁹ and demonstrated that the KO mice grow normally but show several functional abnormalities in their regulation of sleep^{40,41}. The L-PGDS KO mice do not accumulate PGD₂ in their brain during sleep deprivation nor show the NREM sleep rebound after sleep deprivation; whereas the wild-type mice show an increase in the PGD₂ content in their brain during sleep deprivation, which induces the NREM sleep rebound^{40,41}. We also generated TG mice⁴² that over-expressed the human L-PGDS under the control of the β-actin promoter and serendipitously discovered that these TG mice showed a transient increase
in NREM sleep after their tails had been clipped for DNA sampling used for genetic analysis. The noxious stimulation of tail clipping induced a remarkable increase in the PGD₂ content in the brain of the TG mice but not in that of the wild-type ones, although we do not yet understand in detail the mechanism responsible for this increase.

KO mice for various receptors involved in the sleep-wake regulation, such as DP₁, A₁, A₂A, and histamine H₁ receptors, have been already generated and their sleep-wake regulation examined. However, those KO mice showed essentially the same circadian profiles and daily amounts of sleep as wild-type mice, although a minor decrease in the short period of wakefulness was observed in the H₁ KO mice. These phenomena have been explained by genetic compensation, in which the deficiency of one system in a complicated network of the sleep-regulatory system may be effectively compensated by the other systems during embryonic development, because sleep is essential for life. To minimize the effect of functional compensation on the sleep-wake regulation, we used pharmacological tools, such as antagonists for those receptors, to examine the contribution of each system to physiological sleep, as described below. On the other hand, those KO mice showed abnormal behavior in their sleep-wake regulation after some stimulation such as sleep deprivation. Similar to L-PGDS KO mice, DP₁ KO mice did not exhibit NREM sleep rebound after sleep deprivation, indicating that the L-PGDS/PGD₂/DP₁ receptor system is crucial for the homeostatic regulation of NREM sleep.

Contribution of PGD₂ to physiological sleep

We examined the effect of the DP₁ antagonist ONO-4127Na on the sleep of rats and that of a selective inhibitor of L-PGDS, SeCl₄, on the sleep of wild-type and KO mice for PGDS and DP₁ receptors.

ONO-4127Na is a novel DP₁ antagonist developed by Ono Pharmaceutical Co. Ltd. (Osaka, Japan). This compound exhibited a highly specific binding affinity for DP₁ receptors (Kᵣ = 2.5 nM) and antagonism toward these receptors (pA₂ = 9.73). We infused this DP₁ antagonist into the subarachnoid space underlying the rostral basal forebrain of rats during the sleep period. ONO-4127Na infusion had little effect on the sleep-stage distribution at 50 pmol/min but reduced NREM sleep by 23% and 28% and REM sleep by 49% and 63% at 100 and 200 pmol/min, respectively, during perfusion for 6 h and 1 h post-infusion. ONO-4127Na infusion at 200 pmol/min decreased NREM sleep hourly by 30 to 40%, and reduced REM sleep by 60 to 90% commencing about 2 h after the beginning of ONO-4127Na infusion, as compared with the baseline. Although we could not use doses higher than 200 pmol/min due to the low solubility of ONO-4127Na, these results clearly indicate that this DP₁ antagonist dose-dependently reduced NREM and REM sleep, and suggest that the stimulation of DP₁ receptors with endogenous PGD₂ is essential for maintenance of physiological sleep.

Inorganic tetravalent selenium compounds are potent, relatively specific, and reversible inhibitors of PGDS. When we examined the effect of SeCl₄ on the activities of mouse L-PGDS and H-PGDS in vitro, SeCl₄ inhibited both L-PGDS and H-PGDS efficiently with IC₅₀ values of 40 and 90 μM, respectively. We then determined the PGD₂ content in the brain of wild-type mice at 2 h after an intraperitoneal injection of SeCl₄ at a dose of 1.25 to 5 mg/kg body weight during the light period, when mice normally sleep. SeCl₄ given at 1.25 mg/kg had little effect on the PGD₂ content in the brain, but at 2.5 and at 5 mg/kg it reduced the PGD₂ content by 52% and 59%, respectively, without
changing the PGE$_2$ and PGF$_{2\alpha}$ contents. These results indicate that the SeCl$_4$ administration selectively inhibited the production of PGD$_2$ in the brain in vivo without affecting the production of other PGs.41

Next we examined the sleep-wake pattern of wild-type mice before and after an intraperitoneal bolus injection of SeCl$_4$ at doses of 1.25 to 5 mg/kg at 11:00 during the sleep period. In the case of 1.25 mg/kg SeCl$_4$, the sleep-wake pattern was almost identical before and after the injection, similar to the pattern of PGD$_2$ content in the brain. SeCl$_4$ at 2.5 mg/kg slightly reduced both NREM and REM sleep for 2 to 3 h after the injection and decreased the cumulative amounts of NREM and REM sleep for 5 h post-injection by 23% and 44%, respectively. At doses of 4 and 5 mg/kg SeCl$_4$, both NREM and REM sleep decreased promptly after the injection; and SeCl$_4$-injected mice displayed almost complete insomnia within 1 h. The sleep suppression gradually decreased thereafter, lasting about 3 and 5 h after the injection of 4 and 5 mg/kg SeCl$_4$, respectively. SeCl$_4$ given at 4 and 5 mg/kg reduced the 5 h-cumulative amount of NREM sleep during the daytime by 31% and 45%, respectively, and that of REM sleep by 63% and 81%, respectively (Fig. 4A). It also induced a strong rebound-like reaction during the following nighttime to increase NREM and REM sleep. These results revealed that SeCl$_4$ given during the light period dose dependently inhibited NREM and REM sleep of wild-type mice and increased both during the following dark period.

We then administered SeCl$_4$ at 5 mg/kg to various KO mice lacking H-PGDS, L-PGDS, both H-/L-PGDSs or DP$_1$ receptors and compared their sleep-wake cycle with that of the wild-type mice (Fig. 4). In H-PGDS KO mice, SeCl$_4$ also inhibited both NREM and REM sleep, by 80% and almost completely, respectively, and increased the wake time about 2-fold for 1 h after the injection (Fig. 4B). The hourly amounts of NREM sleep and wakefulness returned to the vehicle-injected level within 2 to 3 h after the administration, but the REM sleep suppression was prolonged for 6 h. H-PGDS KO mice showed strong NREM and REM sleep induction and suppression of wakefulness during the following dark period, similar to the WT mice. Between the wild-type and H-PGDS KO mice, there was no statistically significant difference in the responsiveness of NREM and REM sleep and wakefulness to the SeCl$_4$ administration, suggesting that H-PGDS was most likely not involved in the SeCl$_4$-induced insomnia.

In contrast, when L-PGDS KO mice were examined, SeCl$_4$ did not change the amounts of NREM and REM sleep or the time spent in wakefulness at all during the daytime (Fig. 4C), clearly indicating the sleep inhibition immediately after the administration of SeCl$_4$ to be dependent on L-PGDS. When SeCl$_4$ was administered to H-/L-PGDSs double KO mice or to DP$_1$ KO mice (Fig. 4D) under the same experimental conditions, neither the inhibition of
sleep immediately after administration of SeCl₄ nor the delayed increase in sleep during the night was observed, indicating that SeCl₄ was not toxic to inhibit sleep per se but suppressed sleep by inhibiting the endogenous production of PGD₂, whose information is transferred by DP₁ receptors to induce sleep. These results also suggest that sleep in wild-type mice is controlled by PGD₂ produced by L-PGDS, rather than H-PGDS, and recognized by DP₁ receptors under physiological conditions.

Contribution of adenosine to physiological sleep

Complete insomnia was also observed in wild-type mice for 2 to 3 hours after an intraperitoneal injection of caffeine, a non-selective antagonist of adenosine A₁ and A₂ₐ receptors, at a dose of 15 mg/kg, a dose corresponding to an intake of approximately three cups of coffee in humans. In the case of caffeine, there was no disruption of sleep architecture after the 3-h period. We then used KO mice for A₁ or A₂ₐ receptors and their respective wild-type littermates of the inbred C57BL/6 strain obtained from mating of heterozygotes to elucidate which subtype of receptors is involved in caffeine-induced wakefulness/insomnia. The caffeine-induced insomnia was observed in A₁ receptor KO mice to have the same intensity and duration as in wild-type mice. In contrast, A₂ₐ KO mice did not show any change in time spent in wakefulness after the caffeine administration, indicating that the A₂ₐ receptor is crucial in caffeine-induced wakefulness. These results also indicate that the stimulation of A₂ₐ receptors with endogenous adenosine is essential for maintenance of physiological sleep.

Adenosine deaminase, the enzyme that catabolizes adenosine to inosine, is predominantly localized in the TMN in the brain parenchyma, which nucleus is enriched in adenosine A₁ receptors. Therefore, the histaminergic arousal system is predicted to be actively regulated by adenosine in the TMN. Recently we showed that the bilateral injection of an A₁ receptor agonist, N⁶-cyclopentyladenosine, into the rat TMN significantly increased the amount of NREM sleep. The bilateral injection of adenosine or of coformycin, an inhibitor of adenosine deaminase, into the rat TMN also increased NREM sleep, which increase was completely abolished by co-administration of a selective A₁R antagonist, 1,3-dimethyl-8-cyclopentylxanthine. These results indicate that endogenous adenosine in the TMN suppresses the histaminergic system via A₁ receptors to promote NREM sleep.

Acknowledgements

Studies conducted in our laboratory were supported in part by the Program for Promotion of Basic Research Activities for Innovative Biosciences (PROBRAIN); the Program for Promotion of Fundamental Studies in Health Sciences of the National Institute of Biomedical Innovation (NIBIO); a Health and Labor Science Research Grant from the Ministry of Health, Labor, and Welfare, Japan; and by research grants from Takeda Science Foundation, Takeda Pharmaceutical Co. Ltd., Ono Pharmaceutical Co. Ltd., and Osaka city.

References

7) Ram A, Pandey HP, Matsumura H, et al, CSF levels of prostaglandins, especially the level of prostaglandin D₂, are correlated with increasing propensity towards sleep in rats. Brain Res 1997; 751:81-9.

24) Kumakura T, Aritake K, Ago H et al: Structural

45) Islam F, Watanabe Y, Morii H, Hayaishi O.
